Commonly Encountered Animal Sounds Recognition in NTHU

Introduction

Gathering frequently heard animal sounds through open data platforms

 Our model will be trained using relevant animal sound datasets collected from open data sources

• Through a web platform, users will be able to upload their own audio recordings or files. The system will analyze the input and return relevant information and images of the identified animal

System Flow

Model

 VGGish takes audio waveform as input and produces 128-D embedding representations of the semantic content of the waveform.

• To address the issue of varying audio file lengths, we use data segmentation to split the data into segments every 5 seconds for training and predicting.

• Furthermore, we can predict animal sound with different format of file (.wav, .mp3, .m4a, .aac, .flac, .ogg, .mp4, .avi, .mov, .mkv)

Model

• Dataset:

One audio file per animal

• Training environment:

Ubuntu 20.04.4 LTS

Python 3.10

CPU: AMD Ryzen 9 5900X 12-Core Processor

GPU: GeForce RTX 3080 Ti

Web

Category	Technologies / Tools Used
Backend Framework	Django (Python)
Frontend Interface	HTML, Bootstrap
Responsive Design	Bootstrap Grid System (adapts to mobile/tablet/desktop)
Database Management	MySQL, Django ORM
File Handling	Django File Upload, 'MEDIA_ROOT' / 'MEDIA_URL' settings
Development Tools	PyCharm, Python virtual environment ('venv')

DEMO

